
Java/Domino 4.6, Bob Balaban

Page 1-1

Chapter 1

Domino/Notes Programmability
Overview

Believe it or not, this is a big topic all by itself. If we use a broad definition of the word

programmabilty, we have to mention LotusScript, cover the Notes Object Interface (NOI),

and at least touch on each of the ways in which LotusScript and Java programs can be

formulated (agents vs. applications vs. servlets vs. applets vs. CGI), triggered

(foreground, HTTP, scheduled, new mail), where each kind of program can run (client,

server, both), and how each can be edited and debugged.

Were we to cover all these topics in depth, you’d be holding an encyclopedia

instead of a book. Still, we can at least categorize, compare, and contrast to give you an

overview of which technology you might want to use when and where.

The Notes Object Interface (NOI)

We'll be talking a lot in this book about NOI: how to use it and what you can do with it.

In fact, there are five whole chapters that document every call in the Java version of the

API. For now, we'll say only that NOI is a class library, that is, a group of objects that

you can program using LotusScript or Java (this book focuses on the Java interface) that

manipulate the Domino/Notes groupware development platform.

If you are already a Notes/Domino user, you're familiar with such product

concepts as servers, databases, views, and documents. NOI provides a programming

interface to those objects. As of Domino Release 4.6, those objects are available in Java.

Previously, they were available only through the embedded language known as

LotusScript.

Java/Domino 4.6, Bob Balaban

Page 1-2

The term Notes Object Interface is not language specific. It refers to both the Java and

LotusScript APIs. The objects underneath, however, are the same. The differences in the

way you use them have mostly to do with syntactical differences in the two languages.

In the discussions that follow, some familiarity with object-oriented programming

concepts is assumed. If you're already a LotusScript or C++ programmer, you'll have no

trouble at all.

The rest of this chapter is about the kinds of programs people write for Domino and

for Internet-based applications in general. Let’s start with the different kinds of

programs you can write for and in Notes/Domino and define them a bit.

Applications

For the purposes of this book, we’ll use the term application to mean any program that

you start from a system-level icon or from a command line. Applications are self-

contained and reside somewhere on your computer’s disk. The Domino server is an

example of an application, as is a Solitaire card game. Applications almost always have

some kind of user interface (UI) with which you interact. A UI can be a simple

command line or a full-blown windowing environment.

Computer programs, or applications, can be developed in any programming

language: C, COBOL, FORTRAN, Java, all kinds of assembly languages. Some

programs are developed with the aid of other software tools, because developers

sometimes don't know how to program in any of the traditional computer languages.

For example, when you use the Notes client application to create a database and some

forms that perform a business task for you (even if it’s just a list of people you have to

call tomorrow), that’s an application. You created it using Notes, not C, but it’s still an

application.

Downloaded Applets

Java/Domino 4.6, Bob Balaban

Page 1-3

Applets, meaning programs downloaded over a network to your local machine and

(usually) executed by a browser program, are very different from applications. As far as I

know, applets can only be written in Java. A browser is an application that knows how

to find its way around a network (a LAN or the Internet) and display pages. The pages

are “programmed” with a language called HTML (HyperText Markup Language) and

may contain references to Java applets. When a page contains a reference (an e-mail

address, or Universal Resource Locator, or URL) to an embedded Java applet program,

the browser fetches that program, and executes it in the context of the page it is

rendering for you.

For security reasons, browsers restrict the activities that applets can perform.

Applets can’t, for example, load and execute programs from your local hard disk,

although that is a capability of the Java language. They also can’t communicate over the

network with any server, except the one from which it was downloaded. If you were to

write a Java applet that tried, for example, to erase the disk of the hapless user who

downloaded your program, the browser would simply throw a runtime exception, and

your applet would stop executing.

Applets are a lot of what makes the stuff you see on the Internet these days hop

around and boogie. Most of the headache-producing jump and jive you encounter on

most pages, where text flashes in different colors and icons spin around, is programmed

with Java and downloaded to your machine by the browser as applets.

We won’t discuss applets very much in this book, mainly because you can’t use

NOI from an applet. The reason is simple: the Java NOI was implemented in a very thin

layer of Java code that mostly just packages some arguments and calls into the Notes

DLLs (Dynamic Link Libraries) to perform the required work. One of the things that

browsers prevent applets from doing is loading a DLL, so applets are incompatible with

the Domino 4.6 NOI. That doesn’t mean you can’t develop a Web site using Domino

and have applets in your pages. That works fine, because Domino simply serves up

Java/Domino 4.6, Bob Balaban

Page 1-4

your applets along with the rest of the stuff making up your site. What doesn’t work is

downloading an applet to a machine that doesn’t have Domino installed on it and

having that applet try to use a Notes object. The code just isn’t on the machine, and

even if it were, the browser wouldn’t let your applet load it into memory.

How does a Java program become an applet? That’s easy. It just has to be a class

that extends (inherits from) the standard class java.applet.Applet. Well, maybe it’s not

quite that easy. It also has to implement a UI of some kind, or it will be invisible in the

HTML page.

Servlets

If an applet is a Java program that gets downloaded to a browser running on a client

and is hooked into the HTML page with a special tag, then I guess you’d expect a Java

program that runs on the server when it is referenced by an HTML tag to be called a

servlet. A servlet acts as a sort of plug-in to the server. It’s a module that is invoked

before an HTML page is served up to a browser and typically inserts HTML into the

page on the fly. Servlets can also be explicitly invoked by name in a URL.

What would you do with a servlet? Typically, servlets are used to examine the URL

that triggered the retrieval of the current page, do some application-specific processing

(a relational database lookup, for example), and insert stuff into the page on the way to

the client. As a customization tool for Web pages, servlets allow application designers

to have more of the processing occur on the server, offloading the slower client

machine. System administrators also like them because servlets allow them to centralize

access to system resources, such as back-end databases, and simplify deployment

issues.

JavaSoft (the subsidiary of Sun Microsystems that owns Java) has developed a

standard servlet API, which you can download from their Web site. In Chapter 11, we’ll

see how you can use JavaSoft’s classes to write a servlet, and then you’ll see how to

Java/Domino 4.6, Bob Balaban

Page 1-5

convert any servlet into a Domino Agent. I’ll also describe in detail how to set up your

Domino 4.6 HTTP server to work with servlets.

Agents

As with applets and servlets, a Java class becomes an Agent by extending a specified

base class, in this case lotus.notes.AgentBase. Although there was an Agent-like facility

in Notes Release 3.0 called macros, real Agents first appeared in Notes Release 4.0. You

could program them using a Notes @function formula (as in Release 3), with a pick list

of simple actions, or with LotusScript. Notes/Domino 4.6 adds the ability to write agents

using Java. In Chapter 8, we’ll go into great and gory detail about how to create Java

Agents for Domino. For now, though, I’ll just mention some of the advantages that

Domino Agents give you over servlets and applications:

 • Transportability. Agents live in Notes databases and are design elements,

just as forms and views are. That means they travel with the database

contents when the database is moved, copied, or replicated. Once created,

you don’t have to keep track of the Java code separately from your

application.

 • Security. Agents are digitally signed when they are created or modified.

This lets you know who touched an Agent last. Also, the Agent, when it

runs on a server, will have no greater access to any databases than the

signer of the Agent does. Furthermore, users must have designer access to

a database to modify Agents. Agents can be personal (available for editing

and execution only to the person who created it) or shared (available for

execution to anyone with access to the database, and for editing to anyone

with designer access to the database).

 • Tracking. Whenever an Agent is run on a server machine, the server logs

the start and end execution times, custom output messages, and any

errors in the server log.

Like servlets, Agents can be triggered from a URL, a form of network address that tells

you where something (an HTML page, an applet, a picture, a video) lives out there in

Java/Domino 4.6, Bob Balaban

Page 1-6

the universe. Unlike servlets, Agents can also be triggered on Domino servers in a

number of other ways, as we’ll see shortly. Agents run in the foreground can have a

user interface, but Agents run on servers cannot.

CGI (Common Gateway Interface)

CGI programs are sometimes called scripts. They are programs written in any

programming language supported on the server (Perl and C seem to be the most

commonly used languages, although you can use BASIC and even UNIX shell scripts as

well), and are triggered either with a URL or an HTML tag. Like background Agents,

they exhibit no UI.

We won’t be exploring CGI programming in any detail, as there are already

numerous books available on that topic. In addition, my personal opinion is that CGI

scripting will gradually be replaced by other forms of server programmability,

primarily for performance reasons. When a request comes in to an HTTP server to run a

CGI script, the server must first locate the file referenced in the URL (or HTML tag) in

the file system. Then it must start a new process to execute the CGI program (regardless

of whether it’s a C executable, a BASIC program or a Perl or shell script). Arguments to

the program are passed on the command line. When the program is finished, its process

is shut down. The next time a request for that same CGI program comes in, the server

again starts a new process for it. There is no way to cache CGI programs or to run them

in the server process.

More up-to-date servers support higher throughput (and therefore more scalable)

technologies such as servlets and Agents, which usually avoid costly process overhead.

In addition, using Java as your programming language is an advantage, because once a

Java class has been loaded into the Java Virtual Machine (VM), the Java byte code

interpreter and execution environment, it can stay there for awhile, so that successive

Java/Domino 4.6, Bob Balaban

Page 1-7

invocations of the same Agent or servlet do not cause the class file to be reloaded from

disk.

Location and Triggering

Tables 1.1 and 1.2 summarize what’s been said about where each kind of program runs

and how each is triggered.

Table 1.1 Program Location

Program Client Browser Notes Client Domino Server Other HTTP
Server

Applet yes yes no no

Agent no yes yes no

Application no yes yes yes

Servlet no no yes yes

CGI no no yes yes

Table 1.2 Program Triggering

Program Manual Scheduled URL HTML Tag Other Event

Applet no no yes yes no

Agent yes yes yes no yes

Application yes no no no no

Servlet no no yes yes no

CGI yes no yes yes no

Manual triggering refers to the ability to cause a program to run synchronously when

you want, either from a command-line interface or by clicking on an icon or other

command button. In the Notes client, for example, you can cause an Agent to run by

selecting its name from the Actions menu or by selecting it in the Agent View and

clicking on Actions/Run in the menubar. For example, applications and CGI programs

can be run from a DOS command prompt.

Java/Domino 4.6, Bob Balaban

Page 1-8

The Other Event column in Table 1.2 refers to the fact that Domino Agents can be

triggered by events such as new mail arriving in a database or by the modification of an

existing document.

Both URL and HTML triggering are available anytime you have an HTTP server.

Typically, to trigger an Agent or servlet or CGI program from a URL, you simply tack

the program name onto the end of the URL (following the server’s name, plus any

subdirectory). To pass arguments or program-specific commands, you normally use the

HTTP query syntax convention, of a question mark followed by more words. The HTTP

server sees the program name and will run it if it can be found.

Notes Object Interface

The Notes Object Interface (NOI) is a set of classes used to manipulate the functionality

of Notes workstations and Domino servers. As of Domino Release 4.6, NOI is available

through LotusScript and Java bindings, as well as through OLE Automation (from

Visual Basic, for example). NOI implements classes such as Session, Database and

Document, and by using the methods and properties of these classes, you can build

extraordinarily sophisticated collaborative and workflow applications.

We’ll cover the details of the NOI classes in Chapters 2, 3, 4, 5, and 6, but it’s worth

summarizing here what kinds of programs can make use of the NOI classes. NOI is

available only on machines where Notes/Domino is installed.

Table 1.3 NOI Availability

Program Java Client LotusScript Client Java Server LotusScript Server

Applet no no no no

Agent yes yes yes yes

Application yes no yes no

Servlet no no yes no

Java vs. LotusScript vs. JavaScript vs. VBScript

Java/Domino 4.6, Bob Balaban

Page 1-9

Having dissected the world of Domino programmability into the various kinds of

programs you can write, you might wonder why this book focuses so heavily on Java,

to the virtual exclusion of all the other Internet programming languages. Well, since

you asked, I’ll briefly describe the major differences among Java, JavaScript, LotusScript

and VBScript, and then I’ll tell you why I’m ignoring almost everything except Java.

LotusScript

LotusScript is a language based on Microsoft’s Visual Basic (VB). Most of its

components actually come from the original BASIC language, now in the public

domain. Some VB constructs are supported for compatibility. The three major benefits

of LotusScript, however, beyond being familiar to VB programmers, are the object-

oriented extensions to the language that provide for classes, methods, and properties;

the fact that LotusScript is embedded in the Lotus software products (desktop as well as

Domino/Notes); and the LotusScript eXtension (LSX) architecture.

Unlike VB, LotusScript is a fully object-oriented language. You can write your own

classes with full inheritance (single), encapsulation, and data hiding abilities (there is no

polymorphism, at least not yet). Furthermore, each of the LotusScript host products has

its own set of built-in classes that allow you to manipulate the product’s objects from

LotusScript. Thus, 1-2-3 provides a whole set of Range, Sheet and Workbook object

manipulation abilities, and Notes has a set of classes like Session, Database, View, and

DateTime.

The LSX architecture is simply a way of implementing LotusScript classes as

dynamically loadable libraries (DLL in Windows parlance, shared library in UNIX, and

so on), so that any LotusScript hosting product can use it. Thus, 1-2-3 can load the Notes

LSX (provided that Notes is installed on the machine), and the Notes classes appear in

the 1-2-3 class browser as if they were native to the spreadsheet world.

Java/Domino 4.6, Bob Balaban

Page 1-10

In Notes/Domino, LotusScript can be used for both back-end and front-end

scripting. The distinction is simply that front-end scripts manipulate the Notes Client

user interface, and can only run in the context of the Client UI. Back-end scripts, by

contrast, can be run in the background on a server as well as in the Client UI. Back-end

classes (the ones we’re interested in here) can be used anywhere, while front-end classes

(NotesUIWorkspace, NotesUIDatabase, NotesUIView, NotesUIDocument) can be used

only in front-end scripts (on a form button or attached to a form event, for example).

Agents meant to be triggered in the context of a UI operation, such as from the Actions

menu or from a form button, may use front-end classes. However, if you write an Agent

using any front-end classes and then try to run that agent in the background (on a

scheduled basis, for example) where there is no UI context, the agent will fail to run (the

referenced UI classes will not be found). It's the back-end classes that contain all the

data manipulation functionality.

LotusScript Agents can be triggered in all the ways we’ve already discussed: via an

URL, from the Notes Client, and in the background by various events (schedule, new

mail, etc.).

The big drawback of LotusScript as a programming language is that it isn’t

supported by any of the popular Web browsers. That means there’s no way you can

write an applet in LotusScript and have it be downloaded to some random machine and

execute there. Still, LotusScript remains a great Notes application programming

language.

JavaScript

JavaScript and Java are two completely separate languages. They have nothing in

common beyond the word Java in their names. Whereas Java is aimed at professional

programmers and runs on any machine that has an appropriate VM installed,

JavaScript is meant to be used by casual developers, and it works only in the various

Java/Domino 4.6, Bob Balaban

Page 1-11

browser products supplied by Netscape Corp. While Java programs your computer (via

the VM), JavaScript can program only your browser (or whatever browser loads the

Web page containing the script). So far, only Netscape’s browser product fully supports

JavaScript, as there’s no published standard for the language. Microsoft’s Internet

Explorer supports a language that is very similar to JavaScript, called JScript, but you’ll

find that there are subtle (and important) differences.

Make no mistake, JavaScript fills a real need. People authoring interesting Web

pages need a way to “wire” the different elements of the page together and to provide a

way for the browser to handle certain UI events (mouse clicks, typing, and so on)

properly. JavaScript can be used, for example, to catch a mouse click and route the

event to an embedded Java applet.

Is JavaScript a real programming language? Yes and no. It is interpreted, like Java

and BASIC, and it has some of the common programming constructs like arrays and for

loops. Its drawbacks have to do more with its lack of portability (it runs only with

Netscape’s browser) and with the fact that when you write JavaScript code, you give

away your source code every time your page is downloaded. The JavaScript sources are

encoded directly into the HTML stream of the page and are interpreted from source

(unlike Java, which is compiled down to a cross-platform interpretable byte stream)

directly by the browser. This latter fact drives most professional developers to do as

little as possible in JavaScript and to use it to simply connect the dots on the page.

VBScript

VBScript is Microsoft’s alternative to JavaScript (though as I mentioned previously,

Microsoft also supports a JavaScript-like language called JScript). JavaScript’s syntax is

not based on Java, but VBScript is based on Visual Basic. Apart from syntax differences,

it is used in exactly the same way as JavaScript, and it has all the same advantages and

disadvantages.

Java/Domino 4.6, Bob Balaban

Page 1-12

Summary

To sum up, the world of Internet programmability is quite large. Not only do you have

to figure out what kind of HTTP server you might want to use but what language(s)

you want to program it in, and what kind of functionality you want to expose. Are you

looking primarily at downloadable applets? Or are you more interested in server-side

functionality, such as workflow and relational DBMS connectivity?

I’ve attempted to segment the overall space for you and narrow the focus of this

book to the following main points: Domino is an incredibly powerful application

development platform that incorporates an HTTP server, a couple of cool programming

languages, and a great object hierarchy for you to work with. If you’ve settled on using

Domino for your server (or you’re thinking about it), then read on to learn more about

Java and NOI and about the different ways you can use the tools provided by Lotus to

develop your applications.

To this point we've covered the differences among applications, applets, servlets,

and Agents. Chapter 2 is an overview of the role played by NOI in Domino

programmability and the beginning of our in-depth look at the Notes classes. Later

chapters go into much greater detail about how to write Java applications and Agents

for Domino (both single and multithreaded). There are also a few chapters on advanced

topics, such as how to run existing servlets as Domino Agents, and how to use JDBC

with NOI.

